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Abstract

A method for estimating periods corresponding to peaks in the spectral
density of univariate time series is proposed. The large sample distri-
bution of the estimator is derived under the assumption that the observed
process is from a known finite order autoregressive process. A simulation
study is performed to illustrate the results and the method is applied to

a series of hormone levels data.

“KEY WORDS: Univariate time series; Spectral density function; Newton's

Method; Autoregressive processes.
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1. INTRODUCTION

An important use of time series analysis has traditionally been to
determine if rhythmic patterns exist in a time series Y. Udny Yule in 1927
proposed the (second order) autoregressive process as a model for periodic
phenomena. The purpose of this paper is to investigate the autoregressive

method for determining lhe period of such cycles.

Let {Y(t),teZ}, Z the set of integers, be a zero mean covariance
stationary time series with autocovariance function R(v) = E(Y(t)Y(t+v)),

veZ and spectral density function
1 v i
f(w) =5- [ R(We T, wel0,2] .
V‘:—m

If we assume that f is bounded above and below by positive constants,

then (Masani (1966)) we can write as a limit in mean square

1 a(§)Y(t=3) = e(t) , tezZ
j=0
where a(0) = 1, the a(:) are real numbers, and {e(t), teZ)} is a white noise
series of zero mean independent, identically distributed random variables
with common positive variance 02

Thus Y can be written as an infinite order autoregressive process

(AR(~)) and f can be written

(12 1
f(w) = 5— T;?;IE;TE— , welo,2n] ,

where the complex polynomial g(z) = E;=0 a(j)zj has no zeros in or on the
unit circle.
We seek an estimator of a period X2 = 2n/w corresponding to a peak in f,

i.e., estimate A such that f'(%g) =0, f'(

Y
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In section 2 we derive an estimator A of A based on an estimated
AR(p) approximant to f, i.e. use (1.1) with g truncated at some suitable
degree p. Section 3 derives the large sample distribution of A under the
assumption of known finite autoregressive order. The results of a Monte
Carlo simulation study illustrating the known order, unknown but finite
order, and infinite order cases are given in section 4 as well as the

analysis of a real time-series.

2. THE AUTOREGRESSIVE METHOD

Given a sample realization Y(1), ..., Y(T) from Y, let pT(v) = RT(V)/RT(O)’

v=0, ..., M, where

3|

&r(V) =

.

T-v
Y OY(E)Y(t+v), v=0, ..., M,
t=1

and M 1s an integer larger than the approximating order ﬁ. Then ﬁ is chosen

as the value of m minimizing Parzen's (1974) CAT criterion

m
1 T-j, =2 T-m, ~-2
CAT(m) = 1 ] (—Tl)oj -E®S, m=0, ..., N,
j=1
and the 8; are found by the Yule-Walker equations

- - 2
lioaj(Z) op(€-v) GVOJ R

and Gv 18 the Kronecker delta.
Thus the estimated AR(ﬁ) spectral density fﬁ is given by
62
1

AA ’_R
fp(w) 2n

6 ’ wc[O,Zw]
) aa(pelde|?
3=o P

To estimate the period » from fﬁ' we need only find the value of w

maximizing a function of the form




-y

T T

el -

A
T

s(w) = ———— ’ U)C[O,ZTT] ’

given p, a(0) = 1, a(1), ..., a(p) . But this is equivalent to minimizing
s—l(w) = {Z§=0 u(j)eijw(2 which is the spectral density of a moving average
process of order p (MA(p)) with parameters o and white noise variance 2w.

Thus we can write

s YWy = § Ri(v)e V™ = R1(0) + 2 E Ri(v) Cos vw
==p v=1

where the inverse autocovariance function (Cleveland (1972)) Ri(:) consists
of the autocovariances corresponding to the MA(p) process and are given by
p-v
Ri(v) = 2n X a(jla(G+v) , v=0, ..., p .
3=0
Then given’an initial approximation wy to a value w* of w minimizing

hw) = 25_1 Ri(v) Cos vw we use Newton's method to find w* as the limit

of the sequence

he ) E Ri(v) Cos Vo
- L A v=1l
“ntl - “n h'(mn) n
g vRi(v) Sin wu
n
v=1

The initial value wg is obtained in practice as the frequency of a
relative maximum of fﬁ evaluated over a suitable grid of frequencies.
Then if K maxima of fﬁ are found, the estimated frequencies are

labelled @,, ..., &K and corresponding periods by i,, ..., XK .

1’
3. LARGE SAMPLE DISTRIBUTION OF AN ESTIMATED PERIOD

We assume that Y is in fact an AR(p) process with known p. Then

(Parzen (1961))




A G o 2 N (0,8

where &T = G(1), ..., 4@, o = @), ..oy al@), A =0T} has

(j,k) element given by

v
Ajk = ¥ [a(§-1-D)a(k-1-£) ~ a(p+l+l-j)a(p+l+L-k)]
2=0

j,k=1, ..., p, v =min (j-1,k-1), and Fp is the o x p covariance matrix
of p consecutive Y's.

From this fact we have
Lemma

Let Ri® =(Ri(1), ..., Ri(p)), RiT = (R1(1), ..., Ri(p)), and C be the

th T _ , 1 -

P x p matrix having v row gv = (Cv(l), eees Lv(p)) where E;Cv(j) Yv+ja(v+j)

+Yj_va(j—v), and Y © 1if k =0, ..., p and O otherwise.

Then
/T(Ri-R1) —2 no,cach .
Proof
. pzvo
T (Ri(v) - Ri(v)) = VT 2r ] [a(Pa(G+) - a(§)a(i+v)]
j=0

p=-v
= /T2 ] {{a(@)-a(d) a(G+)+a(d) [a(3+v)-a(3+v) 1}
j=0

p~v

r VT2 ] {[a)-a(d) laG+H)+a(l) [a(d+v)-a(i+v) ]}
3=0

P
= § iz,
=1 "V

where z(j) = /T (a(j)-a({)) , § =1, ..., p and the symbol % means

"has the same asymptotic distribution as". Thus /T (ﬁi-gi)&c /T (é—g)

and the lemma follows.

From this we obtain




Theorem

Let w be the estimator obtained by the method of section 2 of the

true peak frequency Wey Then

/T (mwg) == ¥ (0, beac’s)

where b(v) = v Sin vmo/h”(mo) , and h'"(w) =~ E vzﬂi(v) Cos vw .
° v=l

Proof

Since E VRi(v) Sin vo = 0 and & is a consisient estimator of Wy
v=1

since fp converges almost surely to fp, we can write

§ v (ﬁi(v)—Ri(v)) Sin Uy § vRi(v) Sin VWg E vRi(v) [Sin vw-Sin vu

]
v=1 v=1 _v=l 0

W= - O-w - W=w
0

0 0

E vRi(v) [Sin vw-Sin vwol

P v=1

x
w=-w
0

3 ‘ since
E vﬁi(v)[Sin vo-Sin va]
v=1
&—mo
p ” - ~
) VRi(v)[Sin vi~Sin vmol ) v(Ri(v)-Ri(v))[Sin va-Sin Vwol
v=1 . + =1
) i= =l
G=w 0
§ v(RL (v)=R1(v)) (Sin vp-Sin Vi)
and vm] "

=
0

ey peeat

0 gom



max p | Sin vi-Sin Vmol

2 oye1,...,p IREWM-RIM] vZ1 B E=TN

Thus

E v(Ri (v)-Ri (v)) Sin vw

v=1 0

- 2y hw)
W= 0

0

and

E vwWT (Ri(v)-Ri(v) Sin vw

v=1 0

T Gmog) (o)

= bT /1 (Ri-RY)

Corollary
) 4

D /T G-rg) 29 no, %5 bTeac)

4n2

2) If Xl, ceny A, are estimators of A

K 1° cc o A

K 1]
/T (3-1) 25 n(o,pBcacTsTpT)

where D = Diag (Ai/Zn, cees Ai/Zn), and the jth row of the k x p matrix B
is the QT corresponding to mj

We note that since b(v) = v Sin va/h'(mo) that o% , the asymptotic
variance of A is inversely related to the squarce of the second derivative

of the reciprocal of the function to be maximized. Thus the sharper the

peak in f, the more precisely AO can be estimated.




4. SIMULATION STUDY AND WORKED EXAMPLE

To illustrate the results of sections 2 and 3 above for known, unknown
but finite, and infinite order autoregressive processes we performed a
simulation study in two parts: 1) the known and unknown order case, and

2) the infinite order case.
4.1 Simulation of Known and Unknown but Finite Order Case

We simulated on an Amdahl 470V/6 computer at Texas A&M University
20 series each of length 80, 160, and 240 for each of the five autoregressive
models given in table 1. Each of the 300 series was obtained by
Y(t) = —ijla(j)Y(t—j)+e(t), t = p+l, ..., T where (1), ..., €(T) are
iid N(O,oz) variates obtained using the Box-Muller method (Kennedy and
Gentle (1980), é. 202) from U(0,1) variates generated by a composite
generator (Kennedy and Gentle (1980), p. 162), and starting values Y(1),

., Y(p) were obtained as a NP(Q,FP) random variate where Pp is obtained

by the algorithm of Pagano (1973).

Estimators of the spectral density for each series wére determined
in four ways:

1) p,YW: the Yule-Walker equations were solved via Levinson's
algorithm (Levinson (1947)) to determine estimates of the parameters
of the AR(p) process.

2) p,LS: least squares estimators of a(l), ..., a(p), 02 were obtained
via a Gram-Schmidt orthogonalization procedure applied to the

regression model Y = ~Xat+e where YT = (Y(p+1), ..., Y(T) ,

o = (@), ..., alp)), Xjg = YO+i-k), j =1, ..oy T-p , ke=l,

., p, and ET = (e(p+1), ..., (T))
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3) p,YW: The CAT criterion determined order (with Gi obtained via
Levinson's algorithm) parameters estimated by the Yule-Walker equations.

4) p,LS: Same as p,YW except parameters cstimated by least squares.

Figure A contains plots of the true log spectra for each of the five

models, while table 1 lists the true periods (obtained from the coefficients

by the algorithm of section 2) for each model as well as Toi . In each
case the peak of interest is the one for smallest frequency. We note that
models 1, 2, and 5 are very similar except for order and location of peak {
while model 4 has a single broad peak (reflected in the size of To%).
Model 3 is of particular interest since it appears that h"(8.951) a 0
(note how this is reflected in To; ).

Thus it appears that these models are representative of a wide class
of models and that one pathological case (model 3) has been included.

The purpose of this part of the simulation study is twofold:

1) In the p,YW and p,LS case to see if the methodology of section 2
agrees with the theory of section 3 and to compare the performance of YW

and LS, particularly on model 3.

2) To investigate the distribution of A in the finite but unknown
order case.

Table 2 contains results for the p,YW and p,LS cases while figures
B-F display the 20 p,YW and p,LS estimated spectra for the three sample
sizes for each of the five models. A comparison of the spectra for the 'q
YW and LS estimators shows they are almost indistinguishable except that
LS has a wider spectral range in models 2, 3, and 5 and that the peak in

model 3 is estimated somewhat differently by the two methods. This is

reflected in table 2 where it 1s seen that LS decomposes this peak into

two peaks in 4, 4, and 3 series (T = 80, T = 160, T = 240) while YW does




this in 3, I, and 1 series. 7Thus except for this pathological model we
{ind no large difference in the two estimation procedures. Also table 2
shows the expected adherence of the simulated data to the theory of
section 3.

Table 3 and figures G-K report the results of the ﬁ,YW analysis of
the 300 simulated autoregressive processes. The results indicate that
the method estimates periods remarkably well. 1In fact, even though 45%

of the series had the wrong order determined, the results of table 3 are

remarkably similar to those of table 2.
4.2 Simulation of Infinite Order Case

Iwenty series of lengths 80, 160, and 240 were generated from the
MA(8) model Y(t) = e(t) + .309e(t-1) - .0748c(t-2 - .0113e(t-3) - .0853e(t-4)
- .0552¢(t-~5) + .0084c(t-6) + .4621e(t-7) + .288e(t-8) . Figure L contains
the true MA(8) log spectrum and the estimated autoregressive spectra for
cach of the 60 simulated series. Table 4 describes the analysis of each of
the 60 series.

Inspection of table 4 raises two points:

1) The AR orders chosen appear to increase with sample size.

2) This increase leads to estimated models which make two (or even

three in one case) peaks out of the single broad peak.

Thus it appears that if the process Y cannot be adequately represented
as a finite order AR process (in particular if the process has very broad
peaks), the proposed method may not be satisfactory.

We note however that if instead of using approximating AR schemes

one used approximating MA schemes, this would make virtually no change in




(

-1

the algorithm and only the matrix A in the asymptotic covariance of A
would need to be changed in theorem 1 to the asymptotic covariance matrix
of maximum likelihood estimators of MA parameter estimators. We note
however that these methods cannot be extended to the mixed AR-MA processes
since neither their spectra nor its reciprocal can be written as a finite
degree trigonometric polynomial. In this paper we have confined our
attention to approximating AR schemes because of their computational at-

tractiveness and widespread use.
4.3 Analysis of Hormone Levels Data

We consider the levels of luteinizing hormone (LH) in a cow as
measured at 10 minute intervals for a 24 hour period (Rahe et al (1980)).

A plot of the data is given in figure M. Figure N displays the log
spectra of the ﬁ,YW determined AR(13) model

Y(t) .2736 Y(t-1) + .0769 Y(t-2) + .0046 Y(t-3) + .1576 Y(t-4)

L0131 Y(t-5) + .1486 Y(t-6) - .4795 Y(t~7) - .1942 Y(t-8)
+ .0546 Y(t-9) + .0876 Y(t-10) ~ .1546 Y(t-11 + .0756 Y(t-12)
- .1926 Y(t-13) = e(t)
This model gives 3 = 7.278 time intervals with an estimated standard
error sg = .116. Thus a large sample confidence interval for X is given

by (70.46 min, 75.10 min) .
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1. Autoregressive Models used in Simulation Study

Model P A To§ Coefficients :
Number i:
1 7 5.900 3.120 -.6381 -.0140 .0295 .0272 -.1587 - Ei

. i

-.4581 .3572

§ 2 7 7.398  4.240 -.2004  .1158  .1679  .1056  .1357
' .0566  -.3809 !

v 3 9 8.951 924.0 -.41335 L3740 .1071 .3213 .2071

.2089  .1942 -.2828  .3656 a
4 4 6.900  13.44 -.1477 L0601  .3565  .1964

5 10 7.586 4.80 -.3190 -.0175 .1803 0340 .1832

<0423 -,1393 -,2463 .1365 1974




2. Simulation Results for Known Order Case
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a

Model 1 Model 2 Model 3 Model 4 Model 5
o 7 7 9 4 10
A 5.900 7.398 8.951 6.900 7.586
o2 . .039 .053 11.550 .168 .036
A
2
% 160 .020 .026 5.775 .084 .018
2
% 240 .013 .018 3.850 .056 .012
S 5-912,5.937 7.410,7.412 8.776,8.82  6.897,6.891 7.480,7.504
o .056, .041 .198, .173  .624, .736  .158, .148 .077, .071
T=80 b '
cic .950, .900  .750, .750 1.000,1.000 1.000, .950 .850, .800
NBC 3 A
S 5-983,5.914 7.474,7.476 8.997.8.961 €.901.6.906 7.598,7.606
s% .041, .019 .03, .033 .500, .504 .052, .054 .030, .028
T=160
cic 1.000, .950 .900, .900 1.000,1.000 .950, .950 .850, .950
NB 1 .4
Suwg  5-871,5.874 7.431,7.428 8.889,8.82  6.832,6.832 7.556,7.564
R .023, .021 .021, .021 .575, .652 .042, .04l  .009, .009
Ta240
cIc .900, .900 1.000,1.000 1.000,1.000 1.000,1.000 1.000,1.000
NB 1,3

& First number in a pair is for Yule-Walker estimator, second

Squares estimator.

b Confidence Interval Coverage.

¢ Number of Series producing dual peaks in model 3.

in calculation of ;VE , s% , CIC.

is for Least

(Proportion of the 20 A within Zax of 1) .
These series not included

w e
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3. Simulation Results for Unknown Order Cnsea

Rt

Model 1 Model 2 Model 3 Model 4 Model S
P 7 7 9 4 10
A 5.900 7.398 8.951 6.900 7.586
2
% g0 .039 .053 11.550 .168 .036
c% 160 .020 .026 5.775 .084 .018
o§ 240 - 013 .018 3.850 .056 .012
ﬁAVE’szﬁ 7.050, .366 6.650,9.621 7.650,5.713 3.850,1.082 7.150,10.239
- oy C
=80 PMIN'PHAX'PCC 6,8. .65 0.13,-40 3.13,,(0) 3'7’,50 9‘11‘_15
Ke%s 5.944, .061 7.3840 .310 8.634, .832 6.786, .536 7.578%, .1s1
CIC, NB .95 1.70 1.00 ,3 .85 .80
sAVE,sg . 7.650, .471 7.950,3.418 9.600, .568 5.050,2.050 9.800,4.695
- - (ud 4
Bz Puax+ FEC 7,9,.55 7,13,.70 9,11,.55 1,8,.35 3,14, .60
T<160 )
55 5.919, .016 7.479,.049 8.923, .557 6.811, .395 7.632, .057
CIC,NB 1.00 .85 1.00 ,3 .65 .85
ﬁAvt.sg 8.000,2.947 7.550,1.520 10.30,3.800 4.900,2.305 10.45, .787
< s ¢
Py Pruax: PCEC 7,13,.60 7,11,.80 9,15,.50 3.8,.60 10,13,.75
=20
X8 5.878, .045 7.449, .026 9.055, .592 6.830, .010 7.550, .012
CIC,NB .85 .95 1.00 ,3 .80 .95

a Yule-Walker estimators used.

b Series having no peaks not included in calculations.

€ Provoortion choosing correct order.
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: 4. Simulation Results for MA(8) Model a

T =80 T = 160 T = 240
Series »p Periods P Periods P Periods
Number
1 14 9.204,5.888 14  8.552,5.912 15 8.159 »
. 2 7 7.161 7 7.578 9 7.473
.. : 3 s 6.407 13 8.546,5.815 19 7.736,5.869
; & 7 7.881 12 8.470,6.293 7 7.409
5 0 — 7 7.964 7 7.529 :
6 8 7.238 - 14 9.357,5.997 9 7.540 i
# 7 2 5.382 7 7.559 14 8.871,6.278 :
8 3 7.452 7 7.324 7 7.351 }
9 7 s.o1s 7 7.110 14 9.117,6.351
10 7 7.312 7 7.817 8 7.209 |
1n 3 7.386 7 7.097 10 7.896
- 12 6.328 7 7.541 7 7.585 |
’ 13 7 7.678 7 7.133 7 7.111 ‘
14 7 7.508 7 7.408 14 8.824,5.906 “
| 15 7 6.916 8 6.589 15 7.563,5.807 i
l 6 7.216 14 B8.500,6.280 14 7.788 1
7 2 5.021 7 7.750 18 9.785,7.393,5.529 1
18 g 6.867 7 7.255 15  9.181,6.367 5.
19 7 7.365 7 7.060 9 8.405 |
. 20 7 6.787 7 7.335 14 8.937,6.019
Mean?  6.500 6.993  8.650 7.368  11.600 7.621
Vertance’ 8.158  .591  8.13 115 15.832 .133

a YW estimators used, true period is 7.334.

b These calculations for periods do not include peaks or aulti-pesked series.
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FIGURE A. True Log Spectra of Five Autoregressive Models glven in

Table 1
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FIGURE (I, Tog of the ﬁ,Yw Estimated Spectra for Model 2 for Three Sample
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FIGURE I. Log of the p,YW Estimated Spectra for Model 3 for Three Sample

Sizes
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Log of the ﬁ,vw LFstimated Spectra for Model 4 for Three Sample
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FIGURE K. Log of the p,YW Estimated Spectra for Model 5 for Three Sample
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FIGURE L.

Sample Sizes
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FIGURE M.
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Levels of Luteinizing Hormone in a Cow Measured at Ten Minute

intervals for 24 Hours
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= FIGURE N. Log of p,YW Estimated Specetra for llormone Series .




